
A Hardware Accelerator for the
Fast Retrieval of DIALIGN Biological

Sequence Alignments in Linear Space
Azzedine Boukerche, Senior Member, IEEE, Jan M. Correa,

Alba Cristina M.A. de Melo, Senior Member, IEEE, and Ricardo P. Jacobi

Abstract—The recent and astonishing accomplishments in the field of Genomics would not have been possible without the

techniques, algorithms, and tools developed in Bioinformatics. Biological sequence comparison is an important operation in

Bioinformatics because it is used to determine how similar two sequences are. As a result of this operation, one or more alignments are

produced. DIALIGN is an exact algorithm that uses dynamic programming to obtain optimal biological sequence alignments in

quadratic space and time. One effective way to accelerate DIALIGN is to design FPGA-based architectures to execute it.

Nevertheless, the complete retrieval of an alignment in hardware requires modifications on the original algorithm because it executes in

quadratic space. In this paper, we propose and evaluate two FPGA-based accelerators executing DIALIGN in linear space: one to

obtain the optimal DIALIGN score (DIALIGN-Score) and one to retrieve the DIALIGN alignment (DIALIGN-Alignment). Because it

appears to be no documented variant of the DIALIGN algorithm that produces alignments in linear space, we here propose a linear

space variant of the DIALIGN algorithm and have designed the DIALIGN-Alignment accelerator to implement it. The experimental

results show that impressive speedups can be obtained with both accelerators when comparing long biological sequences: the

DIALIGN-Score accelerator achieved a speedup of 383.4 and the DIALIGN-Alignment accelerator reached a speedup of 141.38.

Index Terms—Biology and genetics, dynamic programming, special-purpose and application-based systems.

Ç

1 INTRODUCTION

THE rapid evolution of sequencing techniques combined
with the intense growth in the number of large-scale

genome projects is producing a huge amount of biological
sequence data. Nevertheless, determining the genome
sequence is only the first step toward deciphering the genetic
message encoded in those sequences. In genome projects,
newly determined sequences are first compared with those
placed in genomic databases, in order to discover similarities
[1]. This is done because relevant sequence similarity is
evidence of common evolutionary origin and homology
relationship.

Pairwise sequence comparison is, therefore, a very basic
but important step in genome projects. As a result of this
step, one or more sequence alignments can be produced. A
sequence alignment has a similarity score associated to it
that is obtained by placing one sequence above the other,
making clear the correspondence between the characters [2].

Smith-Waterman (SW) [3] is an exact algorithm based on
the longest common subsequence (LCS) concept that uses
dynamic programming to find optimal local alignments
between two sequences of size n in quadratic space and
time. In this algorithm, a similarity matrix of size n� n is
calculated. Nowadays, SW is the most widely used exact
method to locally align two sequences, and it is very
accurate if the sequences have a single common region of
high similarity. However, if the sequences share more than
one region of high similarity, SW is not very effective.

DIALIGN [4] is based on the idea that a biological
sequence alignment must be built from significant gapless
fragments and is thus able to cope with the situation of
sequences sharing many high similarity regions. DIALIGN
can be used for either local or global alignment as well as
pairwise or multiple sequence alignment. In [5], a variant of
DIALIGN was successfully used to obtain multiple se-
quence alignments of noncoding DNAs. One drawback of
DIALIGN is that it is slower than SW. To overcome this,
alternatives have been proposed to run DIALIGN in
parallel [6] and to combine it with a fast local search
similarity tool [7].

Several high performance hardware-based architectures
have been proposed in the literature [8]. In this paper, we
propose two FPGA-based architectures that execute DIA-
LIGN in linear space. The goal of the first architecture,
called DIALIGN-Score, is to obtain the DIALIGN similarity
score. A partition technique is used in this design, enabling
sequences of any size to be compared.

In many cases, the biologists also need to observe the
alignment between the sequences. It is for this reason that
DIALIGN-Alignment, a second architecture which is able to
retrieve the optimal alignment entirely in hardware, is

808 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

. A. Boukerche is with the School of Information Technology and
Engineering (SITE), University of Ottawa, 800 King Edward Avenue,
Ottawa, Ontario KIN 6N5, Canada. E-mail: boukerch@site.uottawa.ca.

. J.M. Correa and R.P. Jacobi are with the Department of Computer Science,
University of Brasilia (UnB), Campus UNB—ICC-Norte—sub-solo
70910-900, Brasilia-DF, Brazil. E-mail: {jan, rjacobi}@cic.unb.br.

. A.C.M.A. de Melo is with the Department of Computer Science, University
of Brasilia (UnB), Campus UNB—ICC-Norte—sub-solo 70910-900,
Brasilia-DF, Brazil, and with the PARADISE Research Laboratory,
University of Ottawa, Canada. E-mail: albamm@cic.unb.br.

Manuscript received 29 July 2008; revised 6 Feb. 2009; accepted 16 July 2009;
published online 11 Feb. 2010.
Recommended for acceptance by A. George.
For information on obtaining reprints of this article, please send E-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-07-0378.
Digital Object Identifier no. 10.1109/TC.2010.42.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

proposed. This is particularly intricate because the quad-
ratic DIALIGN similarity matrix cannot be completely
stored in the FPGA internal memory, unless the sequences
being compared are very small. Even if complete storage
was possible, the large volume of internal memory accesses
would quickly become a severe bottleneck.

To fully retrieve DIALIGN alignments on hardware in
linear space, we propose a new variant of the DIALIGN
algorithm and designed the DIALIGN-Alignment accelera-
tor to execute it. In both accelerators, a wavefront array
processor design is used. To our utmost knowledge, this is
the first time DIALIGN has been implemented in hardware.

The architectures proposed in this paper were designed
using SystemC [9] and compiled to Verilog with FORTE [10].
The Quartus tool [11] was used to synthesize them to the
FPGA Altera STRATIX II EP2S180F1508I4 and for simulation.
The results obtained with real and synthetic nucleotide
sequences show that impressive speedups were obtained,
when compared to a C program that executes the same
algorithm, running on a Pentium 4 3 GHz. For instance, a
speedup of 383.41 was achieved by DIALIGN-Score when
comparing real DNA sequences of size 194,439 bp (base pairs)
and 169,786 bp. In the previously cited case, the software
implementation took 3 h 4 min and our FPGA implementa-
tion took 28.8 s. In order to retrieve the alignment produced
through the comparison of one real ncRNA (noncoding RNA)
sequence of 118 bases with a DNA sequence of size
5,057,142 bp, a speedup of 126.61 was achieved by DIA-
LIGN-Alignment. This reduced the execution time from
1 min 42 s (software) to 0.8 s (FPGA). In order to compare
synthetic DNA sequences of 128 bp and 10 Mbp (Mega base
pairs), the execution time was reduced from 3 min 45 s
(software) to 1.59 s (FPGA), yielding a speedup of 141.38.

The remainder of this paper is organized as follows:
Section 2 introduces the biological sequence comparison
problem and presents two widely used exact algorithms
that solve it: Smith-Waterman and DIALIGN. In Section 3,
related work in the area of FPGA-based architectures for
sequence comparison is discussed. Section 4 presents the
design of two hardware accelerators made to execute
DIALIGN: DIALIGN-Score and DIALIGN-Alignment. Ex-
perimental results are discussed in Section 5 whereas
Section 6 concludes the paper and presents future work.

2 BIOLOGICAL SEQUENCE COMPARISON

2.1 Sequence Alignment and Score

To compare two sequences, we need to find the best
alignment between them, which is to place one sequence
above the other making clear the correspondence between
similar characters [2].

Given a pairwise alignment between sequences s and t,
the following score can be assigned. For each two bases in
the same column, we associate, for instance, þ1 if both
characters are identical (match), �1 if the characters are
different (mismatch) and �2 if one character is a space (gap).
The score is the sum of the values computed for each
column. Fig. 1 illustrates an alignment.

The maximum score is called the similarity between the
sequences. To solve a biological sequence alignment pro-
blem, we need to obtain the alignment with the highest score.

One of the first exact methods to globally align two
sequences was proposed by Needleman-Wunsh (NW) [12].
This method is based on dynamic programming and
calculates a similarity matrix of size m� n, where m and
n are the sizes of sequences s and t, respectively (jsj ¼ m
and jtj ¼ n).

2.2 The SW Algorithm and Its Variants

The NW algorithm was modified by Smith-Waterman [3] to
deal with local alignments. Like NW, SW is also based in
dynamic programming with quadratic time and space
complexity.

The algorithm consists of two parts: the computation of a
similarity matrix where the highest score indicates the
similarity between the sequences and the identification of
the optimal alignment(s) with the “traces” left by the
highest scores along the matrix.

As input, the algorithm receives two sequences s and t,
with sizes m and n, respectively (jsj ¼ m and jtj ¼ n). There
are mþ 1 possible prefixes for s and nþ 1 possible prefixes
for t, including the empty string. An array is built where the
ði; jÞ entry contains the value of the similarity between two
prefixes of s and t, simðs½1::i�; t½1::j�Þ:Þ. If we denote the
array by A, the value of A½i; j� is the similarity between the
prefixes s½1::i� and t½1::j�. The recurrence relation proposed
by SW is expressed by (1). In this equation, g is the gap
penalty and pði; jÞ is the punctuation for a match ðs½i� ¼ t½j�Þ
or a mismatch ðs½i� 6¼ t½j�Þ.

A½i; j� ¼ max

A½i� 1; j� 1� þ pði; jÞ;
A½i; j� 1� þ g;
A½i� 1; j� þ g;
0

8>><
>>:

9>>=
>>;

ð1Þ

Fig. 2 shows the similarity array A between s ¼
AACGTTGAGCAG and t ¼ ACGCATTGAGTCAG. The
first row and column are initialized with zeros. The other
entries are computed using (1). In Fig. 2, g ¼ �2 and
pði; jÞ ¼ þ1 if s½i� ¼ t½j� and �1 if otherwise.

Array A is computed row by row and left to right on
each row; column by column and top to bottom on each
column; or antidiagonal by antidiagonal, from top to
bottom. For each cell calculated, an arrow is drawn to
indicate the cell that is used in this calculation (A½i� 1; j�;
A½i; j� 1� or A½i� 1; j� 1�), according to (1).

Having calculated the whole similarity array, an optimal
local alignment between two sequences is obtained as
follows: The maximum score value in array A is found and
the arrow departing from this entry is followed until an
entry with value 0 is reached. Each arrow used determines
one column of the alignment. A left arrow in Ai;j indicates
the alignment of s½i� with a gap in t. An upward arrow
represents the alignment of t½j� with a gap in s. Finally, an
arrow on the diagonal indicates that s½i� is aligned with t½j�.
In SW, an optimal local alignment is therefore constructed
from its end to its beginning.

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 809

Fig. 1. Example of alignment between sequences s ¼ TTGTCAGA and

t ¼ TTGTCGAGG, with alignment score ¼ 4.

The algorithms NW and SW assign a constant value to
gaps (linear gap function). However, in a biological perspec-
tive, results are more significant when gaps are kept
together [13]. For this reason, the opening of a gap must
have a greater penalty than its extension. Based on this
observation, Gotoh [14] proposed an algorithm where the
gap penalty is calculated with (2), where k is the number of
consecutive gaps, v is the penalty for opening a gap and u is
the penalty for extending it (affine gap model).

wðkÞ ¼ ukþ v; k � 1: ð2Þ

In order to calculate gaps according to (2), two matrixes
are needed (P and Q), in addition to the similarity matrix A.
These additional matrices are used to compute the cost of a
set of gaps in sequences s and t, respectively. Even with the
computation of additional matrices P and Q time complex-
ity remains OðmnÞ [14].

Myers and Miller [15] proposed the use of Hirschberg’s
algorithm [16] to compute global alignments in linear space.
This algorithm uses a divide-and-conquer technique that
locates a point where the optimal alignment occurs and
recursively splits the similarity matrix calculation to obtain
the actual alignment in linear space. This approach doubles
the execution time, in the worst case [16], when compared
with NW. The same idea can also be applied to the local
alignment problem [13].

2.3 The DIALIGN Algorithm

DIALIGN (DIAgonal ALIGNment) [4] is a method for
sequence alignment that searches for fragments (or diag-
onals) that have no gaps and aligns them. In DIALIGN, an
alignment is defined as a chain of fragments.

One example of a DIALIGN alignment is given in Fig. 3.
In Fig. 3a, the subsequences belonging to fragments are
shown in gray and the aligned fragments are depicted as

lines. Fig. 3b shows the final alignment. Although sequences

s and t are the same as those considered in Fig. 2, the

alignments produced by SW and DIALIGN are different.
For each DIALIGN pairwise alignment, it is necessary to

calculate the relevance of each diagonal found before

attempting to align it. This is done through the equation

Eðl; smÞ ¼ � lnðP ðl; smÞÞ, where P ðl; smÞ is the probability

of a diagonal D of size l have at least sm matches [4].
For each candidate fragment Di, a weight wðDiÞ is

assigned as Eðl; smÞ if Eðl; smÞ is above the given

threshold T and 0, otherwise.
When DIALIGN obtains a new significant fragment, the

algorithm tries to align it consistently with other previously

calculated significant fragments [4]. In an alignment of

k fragments D1; D2; . . . ; Dk the total score S is obtained by

the addition of all weights wðDiÞ; i ¼ 1 to k.
To discover the score S, a dynamic programming

strategy is used. Consider two sequences s and t with sizes

m and n, respectively. For each pair ði; jÞ, it will be

determined all integers k with k � minði; jÞ where the

fragment ðsi�ktj�k; . . . ; sitjÞ beginning at position ði� k; j�
kÞ and ending in position ði; jÞ has a positive weight w. For

each position ði; jÞ is defined a scoreði; jÞ for the alignment

of the prefixes s½1::i� and t½1::j�.
The last fragment Dk which is aligned in position ði; jÞ is

recovered by the function precði; jÞ ¼ Dk. For each fragment

Dk aligned in position ði; jÞ, precði; jÞ chooses the chain of

fragments with the greatest score to date. The score is

calculated as shown in (3), where �ðDi;jÞ is defined as the

largest score of a chain of fragments that ends in ði; jÞ.

scoreði; jÞ ¼ max
scoreði� 1; jÞ;
scoreði; j� 1Þ;
�ðDði; jÞÞ;

8<
: ð3Þ

precði; jÞ ¼

precði; j� 1Þ; Iff scoreði; jÞ ¼ scoreði; j� 1Þ
precði� 1; jÞ; Iff scoreði; j� 1Þ

< scoreði; jÞ ¼ scoreði� 1; jÞ
Di;j; Iff scoreði; j� 1Þ; scoreði� 1; jÞ

< scoreði; jÞ ¼ �ðDi;jÞ

8>>>><
>>>>:

ð4Þ

As in SW, DIALIGN executes in two steps. In the first one,

two dynamic programming matrices are calculated: one for

scores (3) and other for the preceding fragment (prec in (4))

[4]. Once these matrices are entirely calculated, the highest

score is found and the reverse path on the prec matrix is used

to retrieve the alignment.

810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 3. Example of DIALIGN alignment between sequences s ¼
AACGTTGAGCAG and t ¼ ACGCATTGAGTCAG, with three frag-
ments ðACG;TTGA; and CAGÞ.

Fig. 2. Array to compute the similarity between sequences
s ¼ AACGTTGAGCAG and t ¼ ACGCATTGAGTCAG. The optimal
score is 6 and the traceback path is shown in gray.

3 RELATED WORK

In the literature of this field, there are many proposals to
execute dynamic programming biological sequence com-
parison algorithms in hardware. Most of them have the
following characteristics in common:

1. A unidimensional systolic array processor is used: A
systolic array processor is defined as an array of
processor elements that execute in a lock-step basis.
As the blood is pumped to the heart on a regular
basis, data passes through the systolic processing
elements at clock rate, flowing between neighbors
[17]. The seminal work of Lipton and Lopresti [18]
proposed a successful implementation of a dynamic
programming sequence comparison algorithm in
a systolic array. Currently, Lipton and Lopresti’s
architecture design is frequently used to deal with
this problem.

2. The antidiagonals are calculated in parallel: The algo-
rithms presented in Sections 2.2 and 2.3 impose a
dependency where each value of the matrices is
dependent upon the values of the upper, left, and
upper-left cells. Such dependency leads to a nonuni-
form amount of parallelism, where each antidiago-
nal can be calculated independently. Therefore, the
natural choice is to compute the elements of the
same antidiagonal in parallel.

3. The highest score is retrieved: The retrieval of the
alignment requires a traceback procedure over one
or more m� n matrices (Sections 2.2 and 2.3). The
storage of these matrices in hardware severely
restricts the sizes of the sequences compared and,
also, would possibly lead to great overheads due to
memory access conflicts and problems with syn-
chronization, mainly at the matrix calculation phase.
For this reason, most of the approaches retrieve only
the highest score, providing a measure of the
similarity between the sequences;

4. A partition technique is used: The characters that
compose the smallest sequence (also called query
sequence) are frequently stored directly at the
processing elements. In the basic design, each
processing element (PE) stores one character and
is, thus, able to compute one column of the matrix.
This restricts the size of the smallest sequence. In
order to compare sequences of any size, a partition
technique is used that either stores more than one
character in each PE or that computes the matrix in
many phases, using one part of the query sequence
per phase.

Fig. 4 shows how each antidiagonal of the dynamic
programming matrix can be calculated in parallel by a five-
element systolic array. The query sequence (ACGAT) is
previously stored in the processing elements and the
database sequence (CTTAG) flows through the systolic array.
Each element calculates one cell in the current antidiagonal
(shown in gray in Fig. 4) at the same time.

In the following paragraphs, we discuss some hardware-
based architectures for biological sequence comparison that
are present in the literature.

SW (Section 2.2) was implemented in a 128-element
systolic array board called SAMBA (Systolic Accelerator for
Molecular Biological Applications) by Lavenier [19]. In this

work, the antidiagonals are calculated in parallel, as shown
in Fig. 4, and the highest score is obtained. A sequence
partitioning technique is used that enables comparison
between sequences of any size, by comparing each part of
the query sequence with the entire database sequence. A
speedup of 83 was obtained over the software when
comparing a sequence of 3 kbp (kilo base pairs) with a
genomic database of 2 Mbp (Mega base pairs).

A systolic array of computing elements was proposed by
Yamaguchi and Maruyama [20] to retrieve SW alignments.
If the size of the smallest sequence is greater than the
number of elements available, the sequence is broken in
many parts, in a multithreaded way. The overall procedure
is divided in two phases. In the first phase, the query
sequence is broken so that it can fit into the FPGA internal
memory. As long as the scores are calculated, they are
stored in the FPGA internal memory and sent to the host
computer. In the second phase, the similarity matrix
calculated in phase 1 is used to compute the best alignment
by the FPGA. In order to align a 2 kbp sequence with a
8 kbp database, a speedup of 102 was obtained, when
compared with the software implementation.

Puttegowda et al. [21] proposed a systolic array architec-
ture to run the SW algorithm at the OSIRIS board. This board
contains 2 FPGAs: one interfaces with the host machine
whereas the other to executes user-programmed hardware
designs. Dynamic reconfiguration is used to generate custom
circuit logic with the dynamic programming parameters and
the query sequence. Four systolic arrays were implemented
in the same FPGA, which enabled four comparisons to be
made simultaneously. Sequence partitioning is achieved by
using more than one array.

A tool called PHG (Parallel Hardware Generator) was used
to automatically generate a VHDL code and synthesize
hardware from the SW recurrence relations by Marongiu
et al. [22]. The basic comparison function was hand-
designed. The goal was to search a small DNA sequence
in a huge DNA database in order to obtain the highest
score. A speedup of 55.6 was obtained over the software
implementation, when comparing a 24 bp DNA sequence
with a 520 kbp subset of a genomic database.

An FPGA-based systolic array processor was proposed by
Oliver et al. [23] to execute either SW or Gotoh (Section 2.2).

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 811

Fig. 4. Generic systolic array to calculate the dynamic programming
matrix.

In both instances, the goal of the architecture was to obtain
the highest score. A partition technique is used where each
processing element could store up to four sequence
characters. The FPGA calculated the highest score and sent
it to the host computer. A zigzag system floor design was
used. Compared to the results obtained by an optimized
C program, the FPGA attained a speedup of 170, when using
SW to compare proteins of 1,428 amino acids with the
SwissProt database (around 54 M amino acids).

Kestrel [24] is a board that includes a 512-element linear
array of SIMD processing elements, which was initially
designed to execute SW (Section 2.2) and Hidden Markov
Model algorithms [2]. Kestrel is now a more generic
architecture, targeted not only for bioinformatics applications
but also for image processing. In Kestrel, each processing
element completes its operation in one clock cycle. The goal of
the SW algorithm implemented in Kestrel is to obtain the
highest score. It computes each antidiagonal in parallel and
each processing element is responsible to calculate one row.
The best speedups were obtained when comparing a
500 amino acid sequence with a 10 M amino acid subset of a
protein database. In this case, a speedup of 99 was achieved.

Zhang et al. [25] propose the use of a systolic array to
execute SW with both linear and affine gap function
(Section 2.2). In order to achieve better performance, the
architecture executes in many stages, with uneven stage
latencies. The proposed architecture calculates the highest
score in hardware. A partition technique is also used.

Jiang et al. [26] propose a systolic array architecture to
calculate the highest score according to the Gotoh algorithm
(Section 2.2). An optimized zigzag floor plan is used to
accommodate the PEs. Also, a partitioning technique is
used where the query sequence is subdivided in many
parts. A speedup of 352 was attained for the comparison of
two 80 kbp sequences, when compared with software.

The Cray/DRC platform was used in [27] to implement the
FASTA heuristic algorithm [28] in a hardware/software
solution. In this platform, an Opteron is connected through
HyperTransport to a Virtex FPGA, which acts as a copro-
cessor. The most compute-intensive phase of FASTA executes
the SW algorithm in selected parts of the sequences, and this
was the phase implemented in FPGA. The other phases of the
algorithm were executed by the Opteron. SW was imple-
mented as a linear array of systolic elements that retrieves the
highest score. A partition technique was used, enabling
sequences of any size to be compared. Both the internal FPGA
block RAM and the QDR II RAM were used. In order to
compare sequences of sizes 16 kbp� 512 kbp, a speedup of
100 was obtained.

A hardware-software solution that explores both fine-
grained and coarse-grained parallelism was proposed by
[29]. The SRC-6 and the Cray XD1 platforms were used to
implement a systolic array that retrieves the score of the
SW algorithm. As in [27], the FPGA acted as a coprocessor
and is connected to the main processor through a high-speed
network. Many nodes were interconnected through Gigabit
Ethernet and they communicate with MPI (Message Passing
Interface). A partition technique was also used. Speedups
reaching up to 98 were achieved to compare a query
sequence of 2 KB with a 64 KB database, when considering
one engine/chip. The serial execution was also compared
with a six-node parallel execution, where each node contains
eight cores. In this case, a speedup of 2,794 was achieved.

A combined hardware/software architecture for BlastP
was proposed in [30], where a banded version of the Gotoh
algorithm was implemented as an FPGA accelerator. The
third phase of BlastP, gapped extension, consists of executing
the Gotoh algorithm over parts of the sequences. In this
design, only a subset of antidiagonals, called a band, is
calculated. A systolic array design is used where the
communication between neighbor elements is done through
registers. There is, as a result, no direct link between the
processing elements. Since only small parts of the sequences
are compared, there is no need for partitioning. Instead, the
query sequences are packed into 2,048 residues. Speedups
of up to 16.99 were achieved in the Mercury platform,
composed by two Opteron CPUs and two FPGA coproces-
sors. Although the sizes of the query and database
sequences were impressive (1:35 MB� 282 MB, respec-
tively), the query sequence was filtered by BlastP (phases 1
and 2) and only a small part of it was actually used in the
FPGA accelerator.

Table 1 presents a comparative analysis of the hardware-
based architectures discussed in the previous paragraphs.

In this table, the paper’s references are presented in the
first column. The target architecture is shown in column 2.
As can be seen, with the exception of [24], all proposals
discussed use one or more FPGA-based systolic arrays.

The third column contains the algorithm implemented.
In this case, SW either stands for Needleman-Wunsh
(Section 2.1), Smith-Waterman (Section 2.2), or edit dis-
tance computation, all of which are similar algorithms.
Most of the approaches analyzed [19], [20], [21], [22], [24],
[27], [29] execute SW. Some of them [23], [25] execute either
SW or Gotoh (Section 2.2) whereas [26] and [30] implement
only Gotoh. At this time, however, there appears to be no
hardware implementation for DIALIGN.

The goal of the architecture is presented in column 4.
Most of the proposals [19], [22], [23], [24], [25], [26], [27],
[29], [30] calculate the highest score because it can be done
in linear space and it is very efficient in systolic arrays.
Yamaguchi et al. [20] calculate the score and retrieve the
alignment in hardware. Since the space complexity of SW is
Oðn2Þ, only small sequences can be aligned. In Puttegowda
et al. [21], only the similarity matrix computation was made,

812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

TABLE 1
Comparative Overview of the Hardware Based

Accelerators for Sequence Comparison Algorithms

without storing the matrix elements neither obtaining the
highest score.

Most of the proposals [19], [20], [23], [24], [25], [26], [27],
[29] use some kind of partitioning technique (column 5), in
order to deal with sequences of any size. Only three [21],
[22], [30] do not provide partitioning. In [30], partitioning is
not required because the Gotoh algorithm is executed in the
third phase of BlastP.

Finally, column 6 presents the best speedups obtained
with the proposals. They range from 16.9 [30] to 500 [21]
and most of the proposals [20], [23], [24], [25], [26], [27], [29]
achieved speedups higher or equal than 90, when compared
with the software implementation. This demonstrates the
great potential for improvement in performance that can be
achieved though hardware-based approaches.

In addition to those SW/Gotoh variations, a hardware/
software approach is proposed in [31], that implements the
BLAST heuristic method on the SGI Altix RC100 system.
In this architecture, each node has two Virtex-4 FPGAs
connected to the CPU by the NUMALink high bandwidth
bus. The first phases of BLAST were ported to the FPGA and
a systolic array was used to accelerate stage 2. Speedups of
19.52 were obtained, when compared to the CPU-only
solution.

4 DESIGN OF THE FPGA-BASED ARCHITECTURES

TO EXECUTE DIALIGN

As discussed in Section 3, the great majority of the
biological sequence comparison architectures in the litera-
ture use a systolic design. For SW and Gotoh (Section 2.2),
this type of architecture is appropriate because the opera-
tions executed by each processing element are quite similar
and take almost the same time to complete.

In the case of DIALIGN (Section 2.3), the recurrence
relations are more complex and involve a set of conditional
statements. For this reason, the time needed for each PE to
complete its operations can greatly vary. If a systolic design
is used in this case, the clock frequency is usually set
accordingly to the slowest operation path. Zhang et al. [25]
faced this problem when implementing Gotoh with a systolic
array and overcame this concern by using several clocks that
operated on the same frequency but ran on different phases.
This is an efficient solution even though it requires careful
and time-consuming tuning in each target FPGA.

Unlike the architectures presented in Section 3, we
propose the use of wavefront array processors [32] instead
of systolic arrays, for our FPGA-based architectures that
execute DIALIGN. We claim that wavefront array processors
are better suited to deal with our problem since commu-
nication between processing elements is asynchronous,
occurring exactly when output data are available. This is
useful when there are timing uncertainties due to multiple
possible completion instants. Nevertheless, wavefront de-
signs are more elaborate than the systolic ones since they
need a handshaking protocol.

Wavefront array processors have been successfully used
to implement applications in many research domains, such
as motion estimation [33], [34] and computation of eigenva-
lues [35], among others.

The FPGA-based architectures proposed in this section
follow the idea illustrated in Fig. 4, where the query

sequence bases are stored in the processing elements and
the database sequence passes through them. In this way, if
there are enough processing elements, each antidiagonal is
calculated in parallel. Therefore, time complexity of the
sequential DIALIGN, which is OðnmÞ, is reduced to
OðnþmÞ, where n and m are the sizes of the sequences.

The output produced depends on the architecture being
used: DIALIGN-Score (Section 4.2) produces as output the
similarity score, and its positions in the similarity matrix.
DIALIGN-Alignment (Section 4.4) outputs the DIALIGN
alignment itself.

4.1 Basic DIALIGN Architecture

Like most of the previous work (Section 3), we will parallelize
the antidiagonal calculation of the dynamic programming
matrices using a processor array (Fig. 4). Instead of using a
systolic array, a wavefront array processor design is
proposed. In addition, because the recurrence relations of
DIALIGN (3,4) are different from the ones in SW or Gotoh
(Section 2.2), an entirely distinct design must be made for
each Processing Element (PE).

Fig. 5 illustrates the basic wavefront array processor
design that is used in DIALIGN-Score (Section 4.2) and
DIALIGN-Alignment (Section 4.4). In this architecture, each
PE is responsible to calculate one column of the DIALIGN
matrices (score and prec in (3) and (4)). In a previous phase,
the query sequence is read and each PE stores one base
(represented by A; T , and G in Fig. 5). The input and output
elements implement a bidirectional handshaking protocol,
containing input and output data transfer buffers. The
database sequence flows from left to right (one base at a
time) and is represented by coarse arrays. In each proces-
sing element, all computations are made by the RRC
(Recurrence Relations Component), which can be modified to
implement different recurrence relations. At the end of the
computation, the output is produced. Since we opted to
design a wavefront array processor, instead of a systolic
array, we included a handshaking protocol in each proces-
sing element. This protocol guarantees that data are sent to
the next element as soon as it can process it.

The finite state machine diagram of the RRC module is
represented in Fig. 6.

The initial state for every processing element is
Configuration. In this state, the bases composing the query
sequence are input through the wavefront array and
stored in each processing element. After this phase, the
elements enter into the Computation stage and execute the
RRC module (Fig. 5). However, if there are fewer bases
than processing elements, the remaining processing ele-
ments enter into the Idle state. Elements in this state
simply receive input data and send the same data to the
next element. After calculating the recurrence relations, the

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 813

Fig. 5. Basic wavefront array design.

elements enter into the Result Collection state. In this state,
the results are output from the circuit.

4.2 The DIALIGN-Score Architecture

The goal of the DIALIGN-Score architecture is to find the best
DIALIGN score and its position. In order to do this in
hardware, the following modifications were applied to the
original DIALIGN algorithm (Section 2.3). First, we set sm ¼ l
in the probability calculation. Second, the ln logarithm was
replaced by a base 2 logarithm.

The linear wavefront array calculates the antidiagonals as
shown in Fig. 7, using as a base the generic wavefront design
(Fig. 5). In Fig. 7, the scores already calculated are shown in
gray. The border between the gray and white section shows
the antidiagonal being calculated. Diagonals greater than the
threshold T are shown in black. For a diagonal that ends in
position ði; jÞ, the processing element decides if it will be
extended or ended and, in this case, whether it can be
consistently aligned to other diagonals (Section 2.3).

An architecture that performs DIALIGN must contain
formulae (3) and (4). To improve the performance, finding
and alignment of diagonals (fragments) are done simulta-
neously in the wavefront vector. The algorithm for each
processing element is shown in Fig. 8.

In this algorithm, the best diagonal alignment ending
before position (i,j) in the dynamic programming matrix is
retrieved in line 1. In this position, the database and query
bases are compared. If both are equal, the current diagonal
is extended, and it does not need to be aligned (line 3). If
the bases do not match, the diagonal has ended at position
(i,j) and may be added to the alignment (line 4). A diagonal
having a score below the threshold is discarded (lines 5
and 6). If the diagonal is consistent with current alignment,
it is added to the alignment, extending it (lines 10 and 11).
However, it is possible for a current diagonal to be

inconsistent with the alignment and have a better score
than this entire alignment. In this case, the inconsistent
diagonal will become the new alignment (line 16 and 17).
The best score obtained and the last diagonal are stored in
the Processing Element in lines 23 and 24. Finally, the
values required for the recurrence relation are forwarded
to the next Processing Element (line 25).

Fig. 9 shows the structure of the RRC element that was
automatically generated from a SystemC description of
DIALIGN. It is based on a general purpose processor
architecture, which consists of a control unit and a datapath.
The datapath is composed by two switching networks, a
register bank and the recurrence module. The register bank
stores the values used in recurrence relations. The recur-
rence module implements all operations needed to execute
the algorithm. Its inputs are selected from the register bank
through a switching network based on multiplexers. The
outputs of the recurrence module are stored back in the
register set through another switching network. Switching
networks are needed because each register may store

814 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 6. Transition state diagram for the PE elements.

Fig. 7. DIALIGN dynamic programming matrix calculation.

Fig. 8. Algorithm executed in each processing element.

Fig. 9. Recurrence relation component (RRC).

different variables and the inputs needed by the operators
may come from different registers during the execution of

the algorithm.
Fig. 10 presents the recurrence module circuit. Input

values (from In1 to In15) and control lines (C1 to C9) for

the multiplexers are on the left side and outputs (Out1 to

Out6) are on right side. This circuit is utilized many times

to perform all relations.
The adder (þ) in In15 and C9 are utilized to extend weights

wðDÞ of the current diagonalDwhen a match happens. In15,

In14 and “þ” are used to calculate the sum of scores�ðDÞ. The

comparator “¼” verifies if the bases are equal and whether

some flag values are equal to zero or one (In5 to In8 depend on

C4 and C5 giving Out3). The comparator “>” decides ifwðDÞ
is aboveT and is also used to find score(i,j) (3). The recurrence

relation in (4) is implemented by “>”, “¼”, and “&”. The first

line in (4) is computed by the “¼” comparator. The second

and third lines are translated to “>”, “¼”, and “&” according
to the expression ðscoreði; jÞ > scoreði; j� 1Þ&ðscoreði; jÞ ¼
scoreði� 1; jÞÞÞ.

To eliminate the current diagonal Di;j if it is inconsistent,

we must test wether the ending position of the previously

aligned diagonal is greater than the starting point of the

current diagonal. To calculate this, an OR (“j”) and two “>”

are used. If Di;j is inconsistent with precði� 1; jÞ or it is

inconsistent with precði; j� 1Þ then Di;j is inconsistent.

Like most of the approaches presented in Section 3, we also
designed a partition method to compare query sequences
that have more bases than the FPGA systolic elements.

Fig. 11 illustrates the partition technique used in
DIALIGN-Score, where the gray section of the matrix is
already calculated. The query sequence is split into sets
composed of N bases, where N is the total number of
processing elements in the wavefront array. The database
sequence flows entirely through the PEs, and its elements
are compared, each step, with N characters of the query
sequence. This process continues until all the query
sequence characters are compared.

In our design, data is mainly stored at the register banks
inside each Processing Element (PE), at the RRC component
(Fig. 9). The only exception occurs when the partition
technique is used. In this case, the last calculated column is
stored into the RAM memory present in the FPGA board.

4.3 Executing DIALIGN in Linear Space

As discussed in Section 2.3, the DIALIGN alignment is
retrieved by executing a traceback procedure over the prec
matrix. The initial point of departure for this traceback is
the highest score contained in the score matrix. If the sizes
of the sequences are equal to n, the space needed is
quadratic Oðn2Þ [4].

We propose a variant of DIALIGN that executes in linear
space. The proposed variant calculates the whole DIALIGN
matrices but only stores, for each column j, the maximum
score ðscore½j�:valueÞ, the row where it occurs ðscore½j�:rowÞ
and its size ðscore½j�:sizeÞ. Moreover, the ending position of
the preceding fragment ðprec frag½j�:row; prec frag½j�:colÞ of
the fragment that has the highest score in column j is stored.

The main idea of our algorithm is illustrated in Fig. 12.
At the end of the first DIALIGN execution, the vectors
prec frag and score are filled using formulae (3) and (4).

The traceback procedure starts at the highest score. In
Fig. 12, the highest score occurs in column 80 and row 80
ðscore½80�:rowÞ. The last fragment ends at this position. This
fragment is guaranteed to belong to the optimal alignment
(because it has the highest score), so it is stored in the vector
Alignment. The previous fragment ends at row 41 and
column 44 (prec frag½80�:row and prec frag½80�:col). We
compare score½44�:row with prec frag½80�:row to verify if the
fragment stored in column 44 belongs to the optimal
alignment. In this case, it does and so the fragment is also

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 815

Fig. 10. Recurrence module implemented in DIALIGN-Score.

Fig. 11. Partition technique implemented in DIALIGN-Score.

stored in the vector Alignment. The previous fragment
ends at row 15 and column 17 (prec frag½44�:row and
prec frag½44�:col, respectively). However, in this case, the
fragment that ends in row 38 was stored ðscore½17�:rowÞ.
Thus, this is not the fragment we are searching for, and the
area that comprises rows 1 to 15 and columns 1 to 17 needs
to be reprocessed. The traceback procedure will now start
from the fragment that ends in row 15, column 17, since it is
known that it belongs to the optimal alignment. This
procedure is repeated until all the fragments are retrieved.

The algorithm that implements the idea illustrated in
Fig. 12 is shown in Fig. 13. In this algorithm, the DIALIGN
alignment for sequences s and t for a threshold T (Section 2.3)
is obtained.

In line 1 (Fig. 13), the vector Alignment is initialized
with zeroes. Each position of this vector will contain the
row and column where the fragment ends as well as its
size. In line 2, the DIALIGN algorithm is executed for the
entire sequences s and t, with sizes jsj and jtj, respec-
tively, and a threshold T . This execution returns, for each
column j, the highest score as well as information about
the preceding fragment.

In line 4, the global maximum score is computed and
stored in the structure Max scorefvalue; col; rowg. The
position i; j where the maximum score occurs represents
the ending of the last fragment, and prec frag½j�:row,

prec frag½j�:col contain the ending of the previous fragment.
In line 7, a traceback is performed while the row where the
preceding fragment ends is equal to the row where the
highest score occurred (Fig. 12). Each fragment retrieved is
stored in the vector Alignment (line 10). When this condition
does not hold, it means that the information that is stored in
prec frag½j� does not concern a fragment that belongs to the
optimal alignment. For this reason, we need to reexecute the
DIALIGN (line 14) over the same sequences but only a part
of the score and prec matrices will be calculated, defined by
the position i; j where the last fragment of the optimal
alignment has occurred ðMax score:row;Max score colÞ. At
the end of the execution, this algorithm outputs the set of
fragments, from the end to the beginning, which represents
the optimal DIALIGN alignment. Considering the example
illustrated in Fig. 3, the algorithm in Fig. 13 will output the
following tuples (row, column, size): (14,12,3), (9,8,4), and
(3,4,3). With this information at hand, it is trivial to
reconstruct the alignment.

4.4 The DIALIGN-Alignment Architecture

The goal of the DIALIGN-Alignment architecture is to obtain
the DIALIGN alignments in linear space. In order to do that,
we implemented the algorithm proposed in Section 4.3 in a
wavefront array processor that is illustrated in Fig. 14.

In DIALIGN-Alignment, each PE in Fig. 14 executes
exactly the same algorithm as DIALIGN-Score (Fig. 8). The
only difference is that in DIALIGN-Aligment each element
stores not only the highest score and its position but also
information about the preceding fragment (prec-frag in
Fig. 12). The Dialign Alignment Retrieval Module (DARM)
component (Fig. 14) is fundamental to DIALIGN-Align-
ment since it executes most part of the algorithm shown in
Fig. 13. Its goal is to determine which part of the dynamic
programming DIALIGN matrices must be recalculated
(e.g., the striped area in Fig. 12).

After detecting that the DIALIGN computation (line 2 in
Fig. 13) is finished, the DARM begins to collect the vectors
score and prec frag that were calculated by each RRC. The
position of the last fragment that belongs to the optimal
alignment is obtained (e.g., row 15 and column 17 in Fig. 12)
by executing lines 5 to 12 (Fig. 13).

The algorithm executed in the DARM module is shown in
Fig. 15. Recall that, in DIALIGN, an alignment is defined as a
sequence of fragments. Also, the last fragment contains the
alignment final score and it is linked to the previous fragment
(Section 2.3). Given the wavefront array processor composed
by PE 1 to PE N (Fig. 14), the last fragment of the alignment is
the first to enter the DARM module. The DARM module
retrieves as many as possible fragments from a given final

816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 13. Algorithm to retrieve DIALIGN alignments for sequences s and t.
with sizes jsj and jtj, respectively, and threshold T .

Fig. 14. Wavefront array processor designed to execute DIALIGN-
Alignment.

Fig. 12. Example of the execution of our variant of DIALIGN with
sequences s and t, both with 80 base pairs.

fragment and only stores the last fragment processed. If the

last fragment processed is in position (0,0), the best DIALIGN
alignment is completely found and no further reprocessing is
needed. Otherwise, information about the last fragment

processed (Final_column, Final_row in Fig. 15) is the output
of the DARM module, which will be utilized to restrict the

next processing step (line 13 in Fig. 13).
Fig. 16 shows the circuit that implements this part of the

algorithm. Having the last row and column that mark the
limits of the area to be reprocessed, the wavefront array

processor is instructed to execute the next round. If zero
values are obtained for a row and column, no further
reprocessing is done.

5 EXPERIMENTAL RESULTS

Our proposed architectures were designed in SystemC [9]
and translated to Verilog with the FORTE tool [10]. Both the

DIALIGN-Score and DIALIGN-Alignment were synthe-
sized for the FPGA Altera STRATIX 2 EP2S180F1508I4
using QUARTUS II. In order to obtain the speedups, we

implemented DIALIGN-Score and DIALIGN-Alignment in
C and ran these programs on a Pentium 4 3 GHz.

Before the synthesis and simulation with Quartus II,

our FPGA design was tested as follows: First, we ran a
behavioral simulation with the tools provided by FORTE.

Several tests were made and the results were compared to
the ones produced by the software implementation. Second,

we used the FORTE’s Cynthesizer tool to generate a

Verilog RTL description of the system. In this phase, the
same tests were run with a Synopsys VCS simulator, and the

results were compared. Finally, the Verilog files generated

by FORTE were used for synthesis and simulation for the
Altera EP2S180F1508I4 device using the Quartus II tool.

Information related to this synthesis is shown in Table 2.
We were able to accommodate 200 Processing Elements (PEs)

for DIALIGN-Score and 128 PEs for DIALIGN-Alignment.

This reduction in the number of PEs for DIALIGN-Alignment
can be explained by the addition of the DARM element

(Fig. 14) and also by the need to store more data in each PE.

5.1 Results for DIALIGN-Score

In order to verify the speedup of DIALIGN-Score, we

implemented DIALIGN in C, generating an optimized C
program. Instead of using the DIALIGN implementation

available at bibserv.techfak.uni-bielefeld.de/dialign, we opted to

implement optimized C programs for DIALIGN-Score and
DIALIGN-Alignment, using the same algorithms that were

implemented in hardware, for the following reasons. First,

in DIALIGN-Score, some simplifications were made (Sec-
tion 4.2) over the original DIALIGN proposal. Moreover,

the DIALIGN-Score and DIALIGN-Alignment versions do

not store the entire dynamic programming matrices, using
much less memory than the original DIALIGN.

The C programs were compiled with gcc 4.2.4 with
option �O2. We used the C program, and our synthesized

circuits to compare real DNA sequences retrieved from the

NCBI site (www.ncbi.nlm.nih.gov). The sequences com-
pared, and their sizes are illustrated in Table 3.

Table 4 presents the wallclock times and the speedups

achieved by DIALIGN-Score in some DNA comparisons.

Note that, in this table, the wallclock times do not include
data transfer times (FPGA prototype) nor disk read opera-

tions (software implementation). The speedups obtained are

between 383.41 and 343.03. The best speedups were achieved
when comparing sequences AM270375 and AL590443, of

sizes 169,786 and 194,439, respectively. In this case, the

software comparison took 3 h 4 min in software and 28.83 s in
our FPGA prototype, leading to a speedup of 383.41 (Table 4).

The pairwise stage of multiple alignment with DIALIGN

was performed with four variants of Human Adenovirus

(Table 3). Each cell in Table 5 shows the time in seconds for
a given pairwise alignment for both the FPGA architecture

and the software implementation.

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 817

Fig. 15. Algorithm to executed in the DARM component

TABLE 2
Synthesis at the Stratix II EP2S180F1508I4

Fig. 16. Circuit implemented in the DARM module.

In Table 5, six comparisons were made. The total time for
software comparison and the FPGA synthesized circuit
were 2,509.34 s and 6.62 s, respectively. The speedup
achieved, when considering all six comparisons, was 379.05.

5.2 Results for DIALIGN-Alignment

In order to verify the speedup of DIALIGN-Alignment, we
implemented the variant of DIALIGN proposed in Section 4.3
in C, generating an optimized C program. We used the
C program and the FPGA prototype to compare noncoding
RNA (nc-RNA) sequences retrieved from the miRBase
Sequence database (at www.ncrna.org), the Functional RNA
Project (at www.ncrna.org) and the Arabidopsis Small RNA
Project (at http://asrp.cgrb.oregonstate.edu).

Table 6 shows information about the nc-RNA sequences
compared and Table 7 presents the results obtained.

In Table 7, the first two columns show the sequences
compared. The threshold T used in all comparisons was 0,
which means that a new fragment begins every time a match
occurs. This parameter was set to 0 in order to generate a
great number of fragments, thus, possibly increasing the
number of rounds. The fourth column shows how many

times the circuit was reprocessed (Fig. 12, gray region). The
wallclock times (s) for the FPGA and for the C program are
shown in the next columns. Finally, the last column presents
the speedup achieved by the FPGA.

The wallclock time to compare the first two ncRNA
sequences for the optimized C program was 7 ms and the
FPGA took 0.42 ms, achieving a speedup of 16.35. Note that
the execution times depend not only on the size of the
sequences but also on the number of rounds executed. The
best speedup achieved to align these small nc-RNAs with
DIALIGN-Alignment was 17.6.

To obtain similarities between a ncRNA and a DNA
sequence is very important, since it can help us to
understand genetic regulation mechanisms. Therefore, we
used DIALIGN-Alignment to compare the ncRNAs
MI0000061 and MIR156d j stem, shown in Table 6, with
four DNA sequences illustrated in Table 3.

Table 8 presents a very interesting result. The speedups
seem to be dependent mostly on the size of the smaller
sequence. This fact was also observed by [27]. Note the
huge variation on the size of the DNA sequence in the
MIR156d j stem comparison (194,431 bp and 5,047,142 bp,
respectively). This variation is reflected on the execution
times, which are, as we expected, proportional to the sizes
of the sequences.

Nevertheless, the speedups obtained are very similar
(130.40 and 126.61, respectively). The same observation can
be made for the MI0000061 case. This very small variation on

818 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

TABLE 4
Speedups Achieved by DIALIGN-Score

TABLE 5
Pairwise Aligment Times for DIALIGN-Score

and the Software Implementation

TABLE 6
Nc-RNA Sequences Used to Obtain the

Alignments with DIALIGN-Alignment

TABLE 3
DNA Sequences Used in the DIALIGN-Score

and DIALIGN-Alignment Comparisons

TABLE 7
Results Obtained to Align Small ncRNA Sequences

the speedups when varying the size of the longest sequence
can be explained by the fact that the size of the smallest
sequence determines the number of elements used at the
FPGA and, consequently, the amount of parallelism that can
be achieved. This is clear in Table 8, where the best speedups
for real sequences are achieved with the 118 bp sequence
(MIR156d j stem). Considering the best speedups for
MIR156d j stem and MI0000061 (130.40 and 80.46, respec-
tively) an augmentation of 61.01 percent in the size of the
smallest sequence resulted in an increase of 61.70 percent on
the speedup. This shows clearly that a very high level of
parallelism is achieved by DIALIGN-Alignment, with very
low overheads.

In the last row in Table 8, a comparison between two
synthetic DNA sequences with sizes 128 and 10,000,000,
respectively, is shown. In this case, the speedup obtained was
141.38 and the execution time was reduced from 3 min 45 s
to 1.59 s. This result is a very good one, considering that not
only the DIALIGN matrix is calculated but the optimal
alignment is also retrieved.

5.3 Bandwidth Requirements

In this section, we assume that the FPGA is connected to
a host computer through a PCI Express 1.x interface
(www.pcisig.com), which has a bandwidth of 64 Gbps.

In the DIALIGN-Score architecture, interaction with the
CPU is needed at the following phases: Configuration,
Computation, and Result Collection (Fig. 6). During the
configuration phase only a few bits are needed. Essentially, a
database sequence base (2 bits), a flag (1 bit) and a protocol
indication (1 bit) are transferred. The maximum bandwidth
required is then (4� 74:48 Mhz (Table 2))¼ 0:297 Gbps. This
is far below the maximum PCI-E speed of 64 Gbps (8.0 GB/s).
During the computation phase, the scores are calculated and
kept inside the wavefront vector. Thus, the only relevant data
to enter the vector each time is a query sequence base (2 bits),
a flag (1 bit) and protocol indication (1 bit), which also
require 0.297 Gbps. In DIALIGN-Score, the wavefront vector
outputs the following information: score.value (8 bits),
score.row (24 bits), flag (1 bit), and protocol (1 bit). The
number of bits required is then 34ð8þ 24þ 2Þ. At a clock rate
of 74.48 MHz, the bandwidth needed in the output phase is
therefore 2.53 Gbps, which is also fairly below the PCI-E 1.x
and PCI-E 2 capabilities.

In the DIALIGN-Alignment architecture, the same con-
siderations made for the Configuration and Execution phases
in the previous paragraph are valid. Nevertheless, in the

Collect Result phase, fragments that compose the optimal
DIALIGN alignment are transferred from the FPGA to the
host, and that phase places the most demands on bandwidth.
In this phase, the values of prec frag (Fig. 13) need to be
retrieved from the wavefront vector. In our implementation,
we set prec frag:col and score:value to 24 bits and
prec frag:row and prec frag:value to 7 bits, so that a large
database comparison could be done ð10;000;000� 128Þ. The
total number of bits required for each fragment transfer is
then 64ð2� 7þ 2� 24þ 2Þ, where two bits are used as flags.
At a clock rate of 100.1 MHz, DIALIGN-Alignment would
need 6.4 Gbps. This is far below the bandwidth of PCI-E 1.x.

In view of the considerations above, it is clear that the
FPGA designs proposed in this paper will work properly
with the interconnections that usually connect the FPGA to
the CPU: PCI-E 1 (64 Gbps), PCI-E 2 (128 Gbps), Hypertran-
sport 3.0 (332.8 Gbps), and NUMALink (12.8 Gbps).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and evaluated two FPGA
wavefront array processors to execute DIALIGN in linear
space. The first architecture, called DIALIGN-Score, is able
to compare sequences of any size, retrieving the DIALIGN
score. The second architecture (DIALIGN-Alignment) im-
plements a variant of the DIALIGN algorithm that runs in
linear space and is able to retrieve DIALIGN alignments.

The results obtained with the FPGA Altera STRATIX 2
EP2S180F1508I4 show that speedups up to 141.38 can be
achieved by DIALIGN-Alignment, when compared to an
optimized C program running on a Pentium 4 3 GHz. In
this case, the execution time was reduced from 3 min 45 s to
1.59 s. We observed that the speedup is proportional to the
size of the smallest sequence, because it is this sequence that
is put directly onto the processing elements. Additionally, a
speedup of 383.41 was achieved for DIALIGN-Score, when
comparing real DNA sequences.

Moreover, in future work, we intend to design a
partitioning technique for DIALIGN-Alignment that will
allow the smallest sequence to have sizes bigger than the
number of processing elements. Although we have already
implemented a partition technique for the DIALIGN-Score
architecture, partitioning is a much more complex problem
when the alignment is retrieved. In this particular case,
much more information must be stored. Nevertheless, the
partition technique is very important in this case, because
it will enable sequences of any size to be compared in
DIALIGN-Alignment.

We also intend to integrate our DIALIGN FPGA-based
architectures to a NNUS (Nonuniform Node Uniform
System) high-performance reconfigurable computing plat-
form [8]. Finally, we plan to design hardware-based
solutions for other important problems in bioinformatics
such as RNA secondary structure prediction and phyloge-
netic tree generation, among others.

ACKNOWLEDGMENTS

This work was supported in part by grants from Capes/
Brazil (4740/07-6), CNPq/Brazil, FINEP (010801660/2007),
and FAPDF (8-004/008-2007). Part of this work was done
while Dr. A.C.M.A. de Melo was a Post-Doctoral Fellow at
the PARADISE Research Laboratory.

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 819

TABLE 8
Results Obtained to Align Small ncRNAs

with Long DNA Sequences

REFERENCES

[1] C. Wang, B.B. Zhou, and A. Zomaya, “Scaling up Genome
Similarity Search Services through Content Distribution,” Proc.
Int’l Conf. Parallel Processing (ICPP), 2007.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchson, Biological Sequence
Analysis. Cambridge Univ. Press, 1998.

[3] T.F. Smith and M.S. Waterman, “Identification of Common
Molecular Subsequences,” J. Molecular Biology, vol. 147, no. 1,
pp. 195-197, Mar. 1981.

[4] B. Morgenstern, K. Frech, A. Dress, and T. Werner, “DIALIGN:
Finding Local Similarities by Multiple Sequence Alignment,”
Bioinformatics, vol. 14, no. 3, pp. 290-294, Mar. 1998.

[5] R. Siddhartan, “Sigma: Multiple Alignment of Weakly-Conserved
Non-Coding DNA Sequence,” BMC Bioinformatics, vol. 7, no. 143,
Mar. 2006.

[6] M. Schmollinger, K. Nieselt, M. Kaufman, and B. Morgenstern,
“DIALIGN P: Fast Pair-Wise and Multiple Sequence Alignment
using Parallel Processors,” BMC Bioinformatics, vol. 5, no. 128,
Sept. 2004.

[7] B. Morgenstern, “DIALIGN: Multiple DNA and Protein Sequence
Alignment at BiBiServ,” Nucleic Acids Research, vol. 32, pp. W33-
W36, Mar. 2004.

[8] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
and D. Buell, “The Promise of High-Performance Reconfigurable
Computing,” Computer, vol. 41, no. 2, pp. 69-76, Feb. 2008.

[9] IEEE Std 1666-2005, IEEE Standard SystemC Language. IEEE Press,
2006.

[10] Forte Design Systems, “Cynthesizer User’s Guide For Cynthesizer
2.4.0,” 2005.

[11] Altera Corporation, “Introduction to the Quartus II Software
Version 8.0,” Technical Manual,www.altera.com/literature/
manual/intro_to_quartus2.pdf.

[12] S. Needleman and C. Wunsh, “A General Method Applicable to
the Search of Similarities in the Amino Acid Sequence of Two
Proteins,” J. Molecular Biology, vol. 48, pp. 443-453, 1970.

[13] D. Mount, Bioinformatics: Sequence and Genome Analysis. C.S.
Harbor Lab Press, 2004.

[14] O. Gotoh, “Am Improved Algorithm for Matching Biological
Sequences,” J. Molecular Biology, vol. 162, pp. 705-708, 1982.

[15] E.W. Myers and W. Miller, “Optimal Alignments in Linear
Space,” Computer Applications in the Biosciences (CABIOS), vol. 4,
no. 1, pp. 11-17, 1988.

[16] D.S. Hirshberg, “A Linear Space Algorithm for Computing
Maximal Common Subsequences,” Comm. ACM, vol. 18,
pp. 341-343, 1975.

[17] H.T. Kung, “Why Systolic Architectures?,” Computer, vol. 15, no. 1,
pp. 37-46, Jan. 1982.

[18] R.J. Lipton and D. Lopresti, “A Systolic Array for Rapid String
Comparison,” Proc. Chapel Hill Conf. VLSI, pp. 363-376, 1985.

[19] D. Lavenier, “Speeding up Genome Computations with a Systolic
Accelerator,” SIAM News, vol. 31, no. 8, pp. 6-7, 1998.

[20] Y. Yamaguchi, T. Maruyama, and A. Konagaya, “High Speed
Homology Search with FPGAs,” Proc. Pacific Symp. Biocomputing
(PSB), 2002.

[21] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, and P.
Athanas, “A Run-Time Reconfigurable System for Gene-Sequence
Searching,” Proc. Int’l Conf. VLSI Design, pp. 561-566, 2003.

[22] A. Marongiu, P. Palazzari, and V. Rosato, “A Specialized
Hardware Device for the Protein Similarity Search,” Concurrency
and Computation: Practice and Experience, vol. 16, pp. 917-931, 2004.

[23] T.F. Oliver, B. Schmidt, and D.L. Maskell, “Hyper Customized
Processors for Bio-Sequence Database Scanning on FPGAs,” Proc.
ACM/SIDA Int’l Conf. Field Programmable Gate Arrays, pp. 229-237,
2005.

[24] A. Di Bias et al., “The UCSC Kestrel Parallel Processor,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 1, pp. 80-92, Jan.
2005.

[25] P. Zhang, G. Tan, and G.R. Gao, “Implementation of the Smith-
Waterman Algorithm on a Reconfigurable Supercomputing Plat-
form,” Proc. Int’l Conf. High Performance Networking and Computing,
pp. 39-48, 2007.

[26] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A Reconfigurable
Accelerator for Smith-Waterman Algorithm,” IEEE Trans. Circuits
and Systems II, vol. 54, no. 12, pp. 1077-1081, Dec. 2007.

[27] O. Storaasli, W. Yu, D. Strensky, and J. Maltby, “Performance of
FPGA-Based Biological Applications,” Proc. Cray User Group
Meeting, May 2007.

[28] D.J. Lipman and W.R. Pearson, “Rapid and Sensitive Protein
Similarity Searches,” Science, vol. 227, pp. 1435-1441, 1985.

[29] M. Abouellail, E. El-Araby, M. Taher, T. El-Ghazawi, and G.B.
Newby, “DNA and Protein Sequence Alignment with High
Performance Reconfigurable Systems,” Proc. NASA/ESA Conf.
Adaptive Hardware and Systems, 2007.

[30] B. Harris, A.C. Jacob, J.M. Lancaster, J. Buhler, and T.D.
Chamberlain, “A Banded Smith-Waterman FPGA Accelerator
for Mercury BlastP,” Proc. Int’l Conf. Field Programmable Logic and
Applications, pp. 765-769, 2007.

[31] Silicon Graphics Inc., “SGI Reconfigurable Application Specific
Computing: Accelerating Production Workflows,” White paper,
www.sgi.com/pdfs/3721.pdf., 2006.

[32] S.Y. Kung et al., “Wavefront Array Processors—Concept to
Implementation,” Computer, vol. 20, no. 7, pp. 18-33, July 1987.

[33] J. Lee, V. Narayanan, M.J. Irwin, and W. Wolf, “An Efficient
Architecture for Motion Estimation and Compensation in the
Transform Domain,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 16, no. 2, pp. 191-201, Feb. 2006.

[34] D.L. Hung, H. Cheng, and S. Sengkhamyong, “Design of a
Hardware Accelerator for Real-Time Moment Compensation: A
Wavefront Array Approach,” IEEE Trans. Industrial Electronics,
vol. 46, no. 1, pp. 207-218, Feb. 1999.

[35] O.B. Efremides, M.P. Bekakos, and D.J. Evans, “Implementation of
the Generalized WZ Factorization on a Wavefront Array
Processor,” Int’l J. Computer Math., vol. 79, no. 7, pp. 807-815, 2002.

Azzedine Boukerche is a full professor of
computer science and holds a Canada research
chair position at the University of Ottawa. Prior
to this, he was a faculty member at the
Department of Computer Sciences and Engi-
neering, University of North Texas. He also
worked as a senior research scientist at Metron
Corp. located in San Diego, California, where he
was leading several Department of Defense
(DOD) projects on data distribution management

for large-scale distributed and interactive systems. He also worked as a
visiting scientist at Caltech/JPL-NASA, where he contributed to a project
centered on the specification and verification of the software used to
control interplanetary spacecraft operated by JPL/NASA Laboratory. He
was a visiting professor at the The University Paris-Dauphine (June
2008). He is the founding director of PARADISE Research Laboratory at
uOttawa. He is the recipient of several awards, including The Ontario
Distinguished Researcher Award, Canada Foundation for Innovation
Researcher Award, the prestigious Premier’s Ontario Research Ex-
cellence (PREA) Award, the George S. Glinski Award for Excellence in
Research, the corecipient of the third National Award for Telecommu-
nication Software 1999 for his work on a distributed security systems on
mobile phone operations, and several Best Research Paper Awards
including ICC 2009, IWCMC 2009, ICC 2008, PADS 1997-1999,
MSWiM 2001, MobiWac 2006, and DS-RT 2008. He serves as an
associate editor for the IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Vehicular Technology, IEEE Wireless
Communication Magazine, ACM/Springer Wireless Networks, Elsevier
Ad Hoc Networks, Elsevier Int’l Journal on Pervasive and Mobile
Computing, Wiley Wireless Communication and Mobile Computing, Int’l
Journal of Parallel and Distributed Computing (JPDC), and SCS
Transactions on Simulation. His current research interests include
wireless networks and mobile computing, wireless ad hoc and sensor
networks, wireless multimedia, distributed management and security
system for wireless and mobile networks, and large-scale distributed
interactive simulations and collaborative virtual environment. He serves
as a steering committee chair, general chair, and program cochair for
several IEEE/ACM Int’l Conferences, including CNRS ’09, MASCOTS
’02, DCOSS ’06, Globecom ’08 and ’09, and ISCC ’09. He was keynote
speakers at several IEEE Int’l conferences. He also serves as the
secretary of the IEEE ComSoc Technical Committee on Ad Hoc and
Sensor Networks. He is also the editor of three books on mobile
computing, wireless ad hoc, and sensor networks. He is a senior
member of the IEEE and the IEEE Computer Society.

820 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Jan M. Correa received the BS and MSc
degrees in computer science and the PhD
degree in electrical engineering from University
of Brasilia (UnB), Brazil, in 1999, 2001, and
2008, respectively. He is currently an assistant
professor at the (UnB). His current research
interests include genetic algorithms, bioinfor-
matics, and application-specific accelerators.

Alba Cristina M.A. de Melo received the BS
degree in computer science from UnB, Brazil, in
1986, the MsC degree in computer science from
UFRGS, Brazil, in 1991, and the PhD degree in
computer science from the Institut National
Polytechnique de Grenoble, France, in 1996.
She is currently an associate professor at the
University of Brasilia (UnB). In 2008, Dr. de Melo
was a Post-Doctoral Fellow at the PARADISE
Research Laboratory, University of Ottawa,

Canada. Her current research interests include high performance
computing, bioinformatics, and application-specific accelerators. She is
a senior member of the IEEE.

Ricardo P. Jacobi received the MSc degree in
electrical engineering from UFRGS, Brazil, in
1986 and the PhD degree in applied sciences
from the Université Catholique de Louvain,
Belgium, in 1993. He is currently an associate
professor at the University of Brasilia (UnB).
His current research interests include em-
bedded systems design, CAD, and reconfigur-
able architectures.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BOUKERCHE ET AL.: A HARDWARE ACCELERATOR FOR THE FAST RETRIEVAL OF DIALIGN BIOLOGICAL SEQUENCE ALIGNMENTS IN... 821

